Ceramic media is used for tumbling finishing and polishing of product parts and workpieces, also called tumbler media, vibratory media, tumbling chip. It is a melting reaction between sand powder abrasives (such as brown corundum abrasive sand, white corundum abrasive sand, chrome corundum abrasive sand, silicon carbide abrasive sand, alumina powder, zirconia powder, etc.) and other ceramic bonding agents at high temperatures, artificially sintered mass finishing and polishing materials with various shapes. Because its hardness is close to that of stone, it is called tumbling stone. It can repair defects on the product surface, improve surface physical properties, and has a variety of finishing or polishing uses.
2. What types of ceramic media are there?
There are many types of ceramic media, each suitable for different surface treatment purposes.
Depending on the type of sintered abrasive sand powder, the commonly used ones are ceramic deburring media, silicon carbide deburring media, White corundum finishing media, chrome corundum finishing media, porcelain polishing media, High density porcelain media, zirconia polishing ball, Resin media.
According to the use effect, there are rough finishing media, fine finishing media and polishing media. Both rough and fine finishing media have cutting force, but the cutting force is divided into light and heavy. The polishing media does not have cutting force and is only used to improve the surface gloss and brightness of the workpiece.
According to the material, there are ceramic media and resin media. Among them, ceramic media are the collective name for deburring media such as brown corundum, silicon carbide, white corundum, chrome corundum, high-aluminum porcelain, high-density porcelain, and zirconia abrasive media.
3. What is the use of ceramic media?
The operating principle of the ceramic media is to mix the workpiece or part with the tumbling media, add an appropriate amount of water and finishing compound, and load it into tumbling finishing machine In the working barrel, mechanical movements such as tumbling and rotation are carried out through vibratory (vibration), centrifugal disc, barrel, and tumbling barrel, so that the ceramic media and the workpiece impact and rub against each other, finishing the surface to achieve the effect of deburring and polishing.
The role of ceramic media is reflected in two aspects:
The ceramic media with cutting force can perform functions such as deburring, descaling, deflashing, chamfering, derusting, degreasing, cleaning and smoothing of parts and workpieces.
The ceramic media without cutting force improves the density of the skin layer by impacting the product surface, and can polish and brighten the surface of parts and workpieces.
4. How long is the service life of the ceramic media?
The service life of a ceramic media can usually be from a few months to a few years, depending on the hardness, shape, and size of the finishing workpiece. Workpieces with sharp burrs and edges, sharp edges, flash edges, higher hardness and larger appearance will cause greater loss to the media. The service life is shorter.
Of course the most basic factor depends on the quality of the ceramic media. High-quality tumbling media will enhance wear resistance while ensuring finishing efficiency. ShineTec’s ceramic media is a mature and stable formula formed on the basis of dozens of process tests. Corundum sand and ceramic bonding agent have the strongest matching performance, and the wear resistance of the product is longer than other products on the market in terms of service life. There is a 3 times improvement.
5. What are the different functions of ceramic media made of different materials?
5.1 Brown corundum deburring media is suitable for finishing and cutting product workpieces made of general metal or non-metal materials such as burrs, oxide scales, flash edges, turning tool marks, cutting edges, mold closing lines, etc.
5.2 Silicon carbide deburring media are suitable for finishing and cutting hard, highly brittle and low-strength materials, such as cast iron, brass, bronze, zinc, tin and other products, especially magnetic materials such as rubidium iron boron, with very good results.
5.3 White corundum and chrome corundum deburring media are suitable for finishing and cutting some precision parts and components because of their fine grit size. Also, because of their low surface roughness after treatment, they also form a very bright surface effect, so It is often used to finish and polish these products in one process at the same time.
5.4 High alumina porcelain polishing media do not contain abrasive sand inside, so they have no deburring effect. The main component is alumina powder. The abrasive has high density. When it moves with the workpiece, it has a strong impact on the surface of the workpiece, forming a thick surface dense layer, which can improve the surface gloss and brightness of the part.
5.5 The function of high-density porcelain polishing media is the same as that of high-alumina porcelain media. The difference is that the content of alumina powder in high-density porcelain media is higher, and its alumina content can reach more than 95%. Therefore, the density is larger, forming the surface brightness is higher.
5.6 There is no abrasive sand inside the zirconia polishing ball. The main component is zirconia powder. The density of the zirconia media is higher than that of high-density porcelain media. The surface brightness of the workpiece after natural treatment is the highest.
5.7 Resin media contain abrasive sand inside. Depending on the grit size of the sand, they can be divided into heavy cutting, medium cutting, and light cutting. They are suitable for finishing some soft metal workpieces, such as aluminum alloy products.
6. What is the finishing efficiency of the ceramic media?
The finishing efficiency of the ceramic media depends on the grit size of the abrasive sand contained in it and the type of deburring and finishing machine. Specifically in terms of finishing time, the time required for a single finishing treatment can range from a few minutes to a few hours.
The larger the grit size of the abrasive sand, the stronger the cutting force and the higher the finishing efficiency. But the larger the grit size, the greater the surface roughness and therefore the worse the surface finish.
Depending on the operation mode and speed of the tumbling finishing machine, the finishing efficiency can be arranged in the following order: centrifugal disc finishing machine > centrifugal barrel finishing machine > vibratory finishing machine > tumbling barrel finishing machine。
In addition, for the same type of machine, the larger the machine, the larger the volume of the working barrel, and the higher the finishing efficiency.
7. Does the shape and size of the ceramic media affect its finishing performance?
The shape and size of the ceramic media are key factors affecting finishing performance. The purpose of making the ceramic media into shapes such as triangles, cubes, spheres, cylinders, and three-star shapes is to make certain sharp corners, cut surfaces, and curved surfaces of the ceramic media better match the irregular and complex shapes of product parts, so that some parts that are difficult to reach can be parts can also be polished. If the selection of the ceramic media is incorrect, some parts will never be polished, which will definitely affect the finishing performance.
The size of the ceramic media is also an important factor to consider. If the size is too large, it will also cause the inner holes, dead corners, gaps and other parts of the workpiece to be unable to be polished. If the size is too small, on the one hand, it will cause the abrasive to wear too fast, and on the other hand, it will block certain holes in the product, and may even result in defective products.
8. What are the benefits of finishing and polishing with ceramic media?
Are you still looking for manual polishing methods? Let us recommend to you this large-volume, high-efficiency automatic finishing and polishing process. Its comparative advantages over manual finishing methods are as follows:
8.1 Compared with manual finishing and deburring, the efficiency can be improved dozens of times. Using some large-scale tumbling finishing machines, ceramic media mixed workpieces can feed hundreds or even thousands of kilograms at a time, and can be completed within dozens of minutes or hours. This processing efficiency is incomparable to manual polishing.
8.2 The surface effect after finishing is uniform and controllable. The quality of hand polishing depends on the personal skill proficiency of the worker. Some products may have burrs polished cleanly, while others may still have some residue. The surface quality of each product is different. Sometimes it may also cause product damage, resulting in a relatively high scrap rate.
8.3 The running costs of tumbling finishing are extremely low. The one-time purchase cost of the machine starts from a few thousand dollars, and it can generally be used for many years. The choice of ordinary ceramic media depends on the actual conditions of the product parts that need to be processed, and the price ranges from a few dollars to more than ten dollars per kilogram. Buying a few hundred kilograms at a time can usually take several months. The amount of polishing compound is very small and the cost is almost negligible.
Ordinary finishing machines can feed dozens of kilograms of workpieces at a time, and the finishing time for a batch is generally 30-60 minutes. The direct cost of finishing and polishing when evenly distributed to each product is minimal.
On the other hand, in terms of saving labor costs, the advantage of using ceramic media for batch deburring and polishing is even greater. As long as workers need to handle it when loading and unloading materials, the machine can be operated unattended, which greatly saves labor costs.
8.4 By customizing ceramic media with special shapes and sizes, they can be used to process some deburring and polishing areas that cannot be completed by manual finishing. They have powerful functions and wide applicability.
8.5 It is a safe and environmentally friendly deburring and polishing process. Compared with processes such as chemical polishing and electrolytic polishing, the sludge produced by ceramic media can be directly treated as solid waste after filter press, which is environmentally friendly.
9. Can the ceramic media be used for dry finishing?
Not allowed.
The water and finishing compound during the polishing process can provide lubrication. Buffer the impact force generated by the workpiece and ceramic media during high-speed movement. Without the lubrication and buffering effects of water and finishing liquid, the debris and impurities shed during the finishing process will scratch the surface of the workpiece and leave pits on the surface.
At the same time, these metal or non-metal debris and impurities will accelerate the wear of the PU lining in the working barrel, greatly increase the temperature rise generated during work, and greatly reduce the service life of the PU.
If the dust generated during the grinding process is not moistened with water, it will produce dust and pollute the surrounding air and environment.
10. What kind of ceramic media is the best quality?
If you don’t know where to find the best ceramic media, here are some tips to help you decide:
10.1 The shape of the ceramic media. The forming process in the production process of ceramic media is a link that reflects the manufacturing process level of the manufacturer. Good quality control capabilities determine that the ceramic media’s mixing, mud refining, shaping, cutting, and sintering processes all have qualified quality control capabilities. The ceramic media produced in this way have uniform shapes, consistent sizes, smooth surfaces, and sharp corners, these performance indicators ensure that cracks, mud occur rarely.
10.2 The hardness of the ceramic media. This indicator reflects the sintering temperature control level of the kiln. If the kiln temperature is too low, the melting reaction of various micro-powders inside the ceramic media is insufficient, the tumbling media is too tender, the hardness is not up to standard, and the wear is very high during use. If the kiln temperature is too high, it will cause over-burning. Corundum sand on the surface of the ceramic media will precipitate, resulting in a porridge-like surface and the product will be scrapped.
10.3 Durablity of ceramic media. Excellent product raw material quality, strict production process control, and just the right formula combination can produce high-quality ceramic media. The wear resistance of ShineTec’s tumbling media can reach about 3 times that of other manufacturers on the market. You can compare the use cost, which can reduce the direct cost of your product finishing and polishing process by 3 times.
11. How to choose a suitable ceramic media?
11.1 Choose the material of your ceramic media based on the effect you want to achieve. If you want to deburr, descale, deflash, derust, chamfer and other finishing effects on your product parts, then you should choose ceramic deburring media, silicon carbide deburring media, white Corundum finishing media and chrome corundum finishing media are abrasives with cutting force. If you just want to improve the surface brightness of your product, you need to choose polishing porcelain media, high-density porcelain media, and zirconia polishing bead, which are non-cutting and high-density tumbling ceramic media. If your product is made of soft metals such as aluminum alloy, copper, and zinc, you need to choose a resin media.
11.2 Choose the appropriate ceramic media based on the size and surface condition of your product. If your product does not have holes, or cracks, then choose a larger deburring media so that it has a long service life and will not produce stuck holes or clogging even after its shape becomes smaller.
11.3 Choose the appropriate ceramic media based on surface roughness. For rough products, choose a tumbling media with strong cutting force and sharp product corners. For precision parts, choose a abrasive media with fine abrasive grit and low cutting force.