How to remove burrs, descale, rust, mirror polish the copper pipe fittings?

Copper (pure copper, brass, copper alloy) pipe, tube fittings deburring, descaling, mirror polishing technology method

Copper pipe, tube fittings, including copper, brass or other copper alloy pipe fittings, are generally used in plumbing systems and can also be used in food hygiene industries to inhibit bacterial growth. In order to improve the brightness of the product surface, the inner and outer surfaces need to be mirror polished. The traditional polishing process is to use a manual emery wheel for grinding. In this case, we will share a copper elbow pipe(tube) fitting product deburring, descaling, polishing and brightening process technology and methods. This finishing process solution is also suitable for deburring, descaling, chamfering and polishing of other materials such as brass, copper alloy, stainless steel, carbon steel and other pipe tube fittings.

    • jerrylu
    • 2024-06-13
    • 0 Comments

     

Copper (pure copper, brass, copper alloy) pipe, tube fittings deburring, deflashing, descaling, mirror polishing process technology method

1. Copper pipe, tube fittings before polishing
burrs,scale before polishing of copper (pure copper, brass, copper alloy) pipe, tube fittings

Materials:

pure copper

Appearance:

burrs, oxide scale,stretch lines

Shape:

elbow

Size:

DN20 120°

Pre-polishing process:

extrusion molding

Post-polishing process:

packing

2. Finishing and polishing requirements
  • deburring, descaling
  • smooth, mirror-polish effect
3. Polishing process details of copper pipe fittings:
Process steps (1) deburring, descaling (2) fine finish to reduce roughness (3) mirror polishing
Machine and equipment vibratory bowl finishing machine vibratory bowl finishing machine mirror polishing machine
Speed highest highest highest
Tumbling media spherical deburring ceramic media cone polyester media mirror polishing media
Tumbling media to workpiece 4:1 6:1 8:1
Chemical finishing compound finishing compound polishing compound polishing paste
Water appropriate amount, liquid level does not exceed abrasive media appropriate amount, liquid level does not exceed abrasive media no
Polishing time 120 minutes 60 minutes 120 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water high-speed mirror polishing
4. The copper pipe,tube fittings after mirror polishing
Copper (pure copper, brass, copper alloy) elbow pipe deburring, descaling and mirror polishing
deburring,descaling,mirror polishing of copper(pure copper,brass,alloy) pipe, tube fittings elbow

5. Additional instructions
  • During the extrusion and stretching process of copper pipe fittings, the surface tensile lines and pits should not be too high or too deep. If the surface tensile lines and flash are too thick due to the mold, they need to be rough-grinded and leveled with a sanding machine first, and then put into the machine for finishing. In order to improve the batch processing capacity, the rough finishing and polishing machine adopts a vibratory bowl polishing machine, with the heavy-cutting spherical deburring ceramic tumbling media, which can achieve the effect of deburring and removing the oxide layer.
    Using light-cutting precision finishing abrasive media, cone-shaped plastic media for fine finish to further reduce surface roughness.
  • After fine finishing, use a mirror polisher and mirror polishing abrasive media to enhance the brightness and mirror polishing.

6. Final summary
  • In this case, we demonstrated the process of automated deburring, descaling and mirror polishing of the outer surface of a copper elbow pipe fitting.
  • If you need professional technical support for deburring and mirror polishing of copper, brass, copper alloy or stainless steel short pipes, tees, crosses, heads, flanges, caps and other tube fittings or the following stainless steel parts, you can refer to the above cases:
    Copper polishing
    What abrasive media are used for copper polishing
    How to polish the copper surface
    Copper polishing method
    Copper parts polishing in one go
    Copper mirror polishing method
    What is the best polishing method for copper
    How to polish copper to a mirror surface
    What are the methods for brass polishing
    Brass manual polishing
    Copper pipe deburring method
    What abrasive media are used to grind copper parts for deburring
    What machine is used to deburr copper products
    Rust removal of copper pipe fittings
    How to deal with rust on copper parts
    Copper rust cleaning

Mechanical parts textile steel collar deburring, descaling, polishing and brightening process technology method

How to deburr, descale, polishing and brightening the textile steel collars of mechanical parts?

Steel collars, also called spinning rings, are important textile machinery parts in spinning mills. They are made of high-quality carbon steel, alloy steel, bearing steel and other materials. Since the textile process has high requirements for the surface roughness of steel collars, the surface polishing process of the product is particularly important. In this case, we will share a process technology and method for deburring, descaling, and fine finishing and polishing of high-precision bearing steel collars. This polishing process solution is also suitable for the surface polishing of textile steel rings or other machined parts made of hard metal materials.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

mirror polishing effect of deburring, derusting, descaling, brightening of textile steel collars for mechanical parts

1. The textile steel collar before polishing
Burrs and oxide scale on the surface of textile steel collars before polishing of mechanical parts

Materials:

bearing steel

Appearance:

edge burrs,surface oxide skin.

Shape:

circular ring

Size:

D46 MM

Pre-polishing process:

rolling

Post-polishing process:

packing

2. Finishing and polishing requirements
  • descaling, derusting
  • smooth, bright surface; no burrs, no oxide scale
3. Textile steel collar (spinning ring) polishing process details:
Process steps (1) deburring,descaling of rough finishing (2) fine polishing (3) centrifugal drying
Machinery and equipment centrifugal barrel finishing machine centrifugal barrel finishing machine centrifugal dryer
Speed highest highest highest
Tumbling media angle cut tri-star ceramic media 3P polishing media no
Abrasive media to workpiece ratio 4:1 6:1 no
Finishing and polishing compound finishing liquid polishing liquid no
Water appropriate amount,the liquid level is 30mm above the abrasive media appropriate amount,the liquid level is 30mm above the abrasive media no
Polishing time 30 minutes 30 minutes 5 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water centrifugal drying
4. Textile steel collar (spinning ring) finishing and polishing effect
Mechanical parts textile steel collar (spinning ring) deburring, descaling, rough finishing and polishing effect
Mechanical parts textile steel collar (spinning ring) after deburring, descaling, polishinig and brightening

5. Additional instructions
  • The steel collar (spinning ring) is made of high-hardness bearing steel. The material hardness is very high, and the surface is required to meet the requirements of mirror polishing. Therefore, a polishing process solution combining rough finishing and fine polishing is adopted. The rough finishing adopts a centrifugal barrel finisher, and uses heavy cutting force angle cut tri-star tumbling media for rough deburring and descaling. The sharp angle of the tumbling media can reach into the grooves, corners, and inner walls to remove burrs and oxide layers.
    Fine polishing still use centrifugal barrel polishing machines, and the ceramic media uses special precision finishing media 3P polishing media. This abrasive media has a high density and light cutting force. It can improve the surface brightness on the basis of precision cutting and achieve the effect of mirror polishing.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in a anti-rust liquid for anti-rust treatment after polishing. Finally, a spin dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case study, we demonstrated the automated surface deburring, derusting, descaling and polishing process for a steel collar (spinning ring), a precision mechanical component used in the textile industry.
  • If you need professional technical support for the following textile machinery parts polishing issues, you can refer to the above cases:
    Polishing process for precision textile machinery parts
    Deburring process for precision textile machinery parts
    Mirror polishing of textile steel collars
    Polishing of cotton spinning steel collars
    Polishing of fine yarn steel collars
    Polishing of wire rings

Automated finishing and polishing technology for cast iron parts

How to deburr, descale, polish, brighten the cast iron parts?

Items cast from molten iron are collectively called cast iron parts. Due to the influence of the manufacturing process, defects such as pores, pinholes, slag inclusions, cracks, pits, rust spots, burrs, and flash often occur. Do you know how to automatically remove burrs, flash, rust and scale, and polish and brighten cast iron parts? In this case, we will share the process technology and methods of deburring, derusting and descaling, and polishing brightness of an electric hardware used in the power industry – steel foot cast iron parts. This polishing process solution is also applicable to the surface polishing of other hard metal casting parts.

    • jerrylu
    • 2024-06-03
    • 0 Comments

     

deburring, derusting, descaling, polishing, brightening effect of precision bearing steel casting iron feet

1. Cast iron steel feet before polishing
The surface burrs and oxide scale of cast iron feet before polishing

Materials:

cast iron

Appearance:

thick oxide skin on the surface

Shape:

barbell-shaped iron castings

Size:

40*200MM

Pre-polishing process:

rolling

Post-polishing process:

galvanizing

2. Finishing and polishing requirements
  • deburring, descaling
  • smooth, bright surface, no burrs, no oxide scale
3. Cast iron steel foot polishing process details:
Process steps (1) rough finishing of deburring, descaling (2) fine polishing (3) vibratory dryer
Machinery and equipment vibratory finishing machine vibratory finishing machine vibratory dryer
Speed highest highest highest
Tumbling media Angle cut cylinder ceramic media Spherical stainless steel media corn cob polishing media
Abrasive media to workpiece ratio 4:1 6:1 8:1
Finishing and polishing compound finishing liquid polishing liquid no
Water appropriate amount,the liquid level does not exceed the tumbling media appropriate amount,the liquid level does not exceed the tumbling media no
Polishing time 60 minutes 30 minutes 15 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water vibratory drying
4. Cast iron feet after finishing and polishing
deburring, descaling, polishing, brightening of steel foot cast iron parts

rough finishing

steel foot cast iron parts after finishing and polishing

after fine finishing and polishing

5. Additional instructions
  • Cast iron parts are generally medium-to-large product components, and most of the surface treatments are done by sandblasting and shot blasting. However, this product is small in size and large in quantity, with a daily output of several tons. In order to improve efficiency and surface treatment quality, a vibratory finisher is used with heavy-cutting-force angle cut cylinder tumbling media for rough finishing. The sharp edge of the ceramic media can reach into grooves, corners, and gaps to remove burrs and oxide layers.
    For brightening polishing, a general-purpose vibratory polishing machine is used. The polishing media is made of stainless steel ball specially designed for polishing brightness, which can improve the surface brightness and achieve a shiny effect.
  • In order to improve the anti-rust and anti-corrosion performance of the product after water treatment, it is immersed in a anti-rust liquid for anti-rust treatment after polishing. Finally, a vibrating dryer is used to dry the surface moisture and dry it.

6. Final summary
  • In this case, we demonstrated the process of deburring, descaling, derusting, polishing, brightening of a steel foot of cast iron product using a polishing machine.
  • If you need professional technical support for the following polishing issues of cast steel parts, you can refer to the above cases:
    Polishing of cast iron parts
    How long does it usually take to polish cast iron parts
    Methods for deburring cast iron parts
    Automation of deburring cast iron parts
    Rust removal of cast iron parts
    How to remove rust from cast iron
    How to remove oxide scale from cast iron parts
    What are the methods for removing rust from cast iron parts
    How to remove rust from cast iron parts
    Polishing of cast iron parts
    Polishing of castings
    How to polish iron products
    Polishing and finishing of cast iron
    Polishing process of cast iron
    How to remove burrs from iron parts
    Descaling of castings
    Polishing process of cast iron
    What are the methods and techniques for polishing castings
    Polishing technology of pig iron
    Polishing process of electric hardware

What is the ceramic media?

About Ceramic Media

  • 1. What is the ceramic media?
  • Ceramic media is used for tumbling finishing and polishing of product parts and workpieces, also called tumbler media, vibratory media, tumbling chip. It is a melting reaction between sand powder abrasives (such as brown corundum abrasive sand, white corundum abrasive sand, chrome corundum abrasive sand, silicon carbide abrasive sand, alumina powder, zirconia powder, etc.) and other ceramic bonding agents at high temperatures, artificially sintered mass finishing and polishing materials with various shapes. Because its hardness is close to that of stone, it is called tumbling stone. It can repair defects on the product surface, improve surface physical properties, and has a variety of finishing or polishing uses.
    ceramic media producing-cutting&shaping
    ceramic media producing-sintering
  • 2. What types of ceramic media are there?
  • There are many types of ceramic media, each suitable for different surface treatment purposes.
    Depending on the type of sintered abrasive sand powder, the commonly used ones are ceramic deburring media, silicon carbide deburring media, White corundum finishing media, chrome corundum finishing media, porcelain polishing media, High density porcelain media, zirconia polishing ball, Resin media.
    According to the use effect, there are rough finishing media, fine finishing media and polishing media. Both rough and fine finishing media have cutting force, but the cutting force is divided into light and heavy. The polishing media does not have cutting force and is only used to improve the surface gloss and brightness of the workpiece.
    According to the material, there are ceramic media and resin media. Among them, ceramic media are the collective name for deburring media such as brown corundum, silicon carbide, white corundum, chrome corundum, high-aluminum porcelain, high-density porcelain, and zirconia abrasive media.

    angle cut cylinder porcelain media
    cone resin media
  • 3. What is the use of ceramic media?
  • The operating principle of the ceramic media is to mix the workpiece or part with the tumbling media, add an appropriate amount of water and finishing compound, and load it into tumbling finishing machine In the working barrel, mechanical movements such as tumbling and rotation are carried out through vibratory (vibration), centrifugal disc, barrel, and tumbling barrel, so that the ceramic media and the workpiece impact and rub against each other, finishing the surface to achieve the effect of deburring and polishing.
    The role of ceramic media is reflected in two aspects:
    The ceramic media with cutting force can perform functions such as deburring, descaling, deflashing, chamfering, derusting, degreasing, cleaning and smoothing of parts and workpieces.
    The ceramic media without cutting force improves the density of the skin layer by impacting the product surface, and can polish and brighten the surface of parts and workpieces.

    heavy cutting ceramic media
    porcelain polishing media
  • 4. How long is the service life of the ceramic media?
  • The service life of a ceramic media can usually be from a few months to a few years, depending on the hardness, shape, and size of the finishing workpiece. Workpieces with sharp burrs and edges, sharp edges, flash edges, higher hardness and larger appearance will cause greater loss to the media. The service life is shorter.
    Of course the most basic factor depends on the quality of the ceramic media. High-quality tumbling media will enhance wear resistance while ensuring finishing efficiency. ShineTec’s ceramic media is a mature and stable formula formed on the basis of dozens of process tests. Corundum sand and ceramic bonding agent have the strongest matching performance, and the wear resistance of the product is longer than other products on the market in terms of service life. There is a 3 times improvement.
  • 5. What are the different functions of ceramic media made of different materials?
  • 5.1 Brown corundum deburring media is suitable for finishing and cutting product workpieces made of general metal or non-metal materials such as burrs, oxide scales, flash edges, turning tool marks, cutting edges, mold closing lines, etc.

    5.2 Silicon carbide deburring media are suitable for finishing and cutting hard, highly brittle and low-strength materials, such as cast iron, brass, bronze, zinc, tin and other products, especially magnetic materials such as rubidium iron boron, with very good results.

    5.3 White corundum and chrome corundum deburring media are suitable for finishing and cutting some precision parts and components because of their fine grit size. Also, because of their low surface roughness after treatment, they also form a very bright surface effect, so It is often used to finish and polish these products in one process at the same time.

    5.4 High alumina porcelain polishing media do not contain abrasive sand inside, so they have no deburring effect. The main component is alumina powder. The abrasive has high density. When it moves with the workpiece, it has a strong impact on the surface of the workpiece, forming a thick surface dense layer, which can improve the surface gloss and brightness of the part.

    5.5 The function of high-density porcelain polishing media is the same as that of high-alumina porcelain media. The difference is that the content of alumina powder in high-density porcelain media is higher, and its alumina content can reach more than 95%. Therefore, the density is larger, forming the surface brightness is higher.

    5.6 There is no abrasive sand inside the zirconia polishing ball. The main component is zirconia powder. The density of the zirconia media is higher than that of high-density porcelain media. The surface brightness of the workpiece after natural treatment is the highest.

    5.7 Resin media contain abrasive sand inside. Depending on the grit size of the sand, they can be divided into heavy cutting, medium cutting, and light cutting. They are suitable for finishing some soft metal workpieces, such as aluminum alloy products.

  • 6. What is the finishing efficiency of the ceramic media?
  • The finishing efficiency of the ceramic media depends on the grit size of the abrasive sand contained in it and the type of deburring and finishing machine. Specifically in terms of finishing time, the time required for a single finishing treatment can range from a few minutes to a few hours.
    The larger the grit size of the abrasive sand, the stronger the cutting force and the higher the finishing efficiency. But the larger the grit size, the greater the surface roughness and therefore the worse the surface finish.
    Depending on the operation mode and speed of the tumbling finishing machine, the finishing efficiency can be arranged in the following order:
    centrifugal disc finishing machine > centrifugal barrel finishing machine > vibratory finishing machine > tumbling barrel finishing machine
    In addition, for the same type of machine, the larger the machine, the larger the volume of the working barrel, and the higher the finishing efficiency.

    ShineTec fully automatic polishing machine for hardware
  • 7. Does the shape and size of the ceramic media affect its finishing performance?
  • The shape and size of the ceramic media are key factors affecting finishing performance. The purpose of making the ceramic media into shapes such as triangles, cubes, spheres, cylinders, and three-star shapes is to make certain sharp corners, cut surfaces, and curved surfaces of the ceramic media better match the irregular and complex shapes of product parts, so that some parts that are difficult to reach can be parts can also be polished. If the selection of the ceramic media is incorrect, some parts will never be polished, which will definitely affect the finishing performance.
    The size of the ceramic media is also an important factor to consider. If the size is too large, it will also cause the inner holes, dead corners, gaps and other parts of the workpiece to be unable to be polished. If the size is too small, on the one hand, it will cause the abrasive to wear too fast, and on the other hand, it will block certain holes in the product, and may even result in defective products.

  • 8. What are the benefits of finishing and polishing with ceramic media?
  • Are you still looking for manual polishing methods? Let us recommend to you this large-volume, high-efficiency automatic finishing and polishing process. Its comparative advantages over manual finishing methods are as follows:

    8.1 Compared with manual finishing and deburring, the efficiency can be improved dozens of times. Using some large-scale tumbling finishing machines, ceramic media mixed workpieces can feed hundreds or even thousands of kilograms at a time, and can be completed within dozens of minutes or hours. This processing efficiency is incomparable to manual polishing.

    8.2 The surface effect after finishing is uniform and controllable. The quality of hand polishing depends on the personal skill proficiency of the worker. Some products may have burrs polished cleanly, while others may still have some residue. The surface quality of each product is different. Sometimes it may also cause product damage, resulting in a relatively high scrap rate.

    8.3 The running costs of tumbling finishing are extremely low. The one-time purchase cost of the machine starts from a few thousand dollars, and it can generally be used for many years. The choice of ordinary ceramic media depends on the actual conditions of the product parts that need to be processed, and the price ranges from a few dollars to more than ten dollars per kilogram. Buying a few hundred kilograms at a time can usually take several months. The amount of polishing compound is very small and the cost is almost negligible.
    Ordinary finishing machines can feed dozens of kilograms of workpieces at a time, and the finishing time for a batch is generally 30-60 minutes. The direct cost of finishing and polishing when evenly distributed to each product is minimal.
    On the other hand, in terms of saving labor costs, the advantage of using ceramic media for batch deburring and polishing is even greater. As long as workers need to handle it when loading and unloading materials, the machine can be operated unattended, which greatly saves labor costs.

    8.4 By customizing ceramic media with special shapes and sizes, they can be used to process some deburring and polishing areas that cannot be completed by manual finishing. They have powerful functions and wide applicability.

    8.5 It is a safe and environmentally friendly deburring and polishing process. Compared with processes such as chemical polishing and electrolytic polishing, the sludge produced by ceramic media can be directly treated as solid waste after filter press, which is environmentally friendly.
  • 9. Can the ceramic media be used for dry finishing?
  • Not allowed.

    The water and finishing compound during the polishing process can provide lubrication. Buffer the impact force generated by the workpiece and ceramic media during high-speed movement. Without the lubrication and buffering effects of water and finishing liquid, the debris and impurities shed during the finishing process will scratch the surface of the workpiece and leave pits on the surface.

    At the same time, these metal or non-metal debris and impurities will accelerate the wear of the PU lining in the working barrel, greatly increase the temperature rise generated during work, and greatly reduce the service life of the PU.
    If the dust generated during the grinding process is not moistened with water, it will produce dust and pollute the surrounding air and environment.
  • 10. What kind of ceramic media is the best quality?
  • If you don’t know where to find the best ceramic media, here are some tips to help you decide:

    10.1 The shape of the ceramic media. The forming process in the production process of ceramic media is a link that reflects the manufacturing process level of the manufacturer. Good quality control capabilities determine that the ceramic media’s mixing, mud refining, shaping, cutting, and sintering processes all have qualified quality control capabilities. The ceramic media produced in this way have uniform shapes, consistent sizes, smooth surfaces, and sharp corners, these performance indicators ensure that cracks, mud occur rarely.

    10.2 The hardness of the ceramic media. This indicator reflects the sintering temperature control level of the kiln. If the kiln temperature is too low, the melting reaction of various micro-powders inside the ceramic media is insufficient, the tumbling media is too tender, the hardness is not up to standard, and the wear is very high during use. If the kiln temperature is too high, it will cause over-burning. Corundum sand on the surface of the ceramic media will precipitate, resulting in a porridge-like surface and the product will be scrapped.

    10.3 Durablity of ceramic media. Excellent product raw material quality, strict production process control, and just the right formula combination can produce high-quality ceramic media. The wear resistance of ShineTec’s tumbling media can reach about 3 times that of other manufacturers on the market. You can compare the use cost, which can reduce the direct cost of your product finishing and polishing process by 3 times.

    high quality ceramic media
  • 11. How to choose a suitable ceramic media?
  • 11.1 Choose the material of your ceramic media based on the effect you want to achieve. If you want to deburr, descale, deflash, derust, chamfer and other finishing effects on your product parts, then you should choose ceramic deburring media, silicon carbide deburring media, white Corundum finishing media and chrome corundum finishing media are abrasives with cutting force. If you just want to improve the surface brightness of your product, you need to choose polishing porcelain media, high-density porcelain media, and zirconia polishing bead, which are non-cutting and high-density tumbling ceramic media. If your product is made of soft metals such as aluminum alloy, copper, and zinc, you need to choose a resin media.

    11.2 Choose the appropriate ceramic media based on the size and surface condition of your product. If your product does not have holes, or cracks, then choose a larger deburring media so that it has a long service life and will not produce stuck holes or clogging even after its shape becomes smaller.

    11.3 Choose the appropriate ceramic media based on surface roughness. For rough products, choose a tumbling media with strong cutting force and sharp product corners. For precision parts, choose a abrasive media with fine abrasive grit and low cutting force.

What is the finishing media?

About Finishing Media

  • 1. What is the finishing media?
  • All materials that are naturally produced or artificially produced and have high hardness, cutting ability and certain strength and toughness, and are used for grinding, finishing or polishing, can be finishing media, abrasive media. Finishing media are a diverse category, and many people have questions of one kind or another, such as: What are finishing media? What are the commonly used finishing media? What are finishing media used for? What are the types of finishing media? Let’s talk about these issues in detail below.
    natural abrasives
  • 2. What are the types and uses of commonly used finishing media?
  • According to the source, abrasives can be divided into two categories: natural abrasive media and artificial finishing media.

    2.1 Natural abrasive media include diamond, natural corundum (also called emery), garnet, quartz sand, diatomaceous earth, pumice, flint, silica, feldspar, chalk, lime for polishing, etc.

    2.1.1 Diamond. Diamond is the hardest substance currently known. The main ingredient is carbon, which is expensive because of its limited origin. Mainly used for manufacturing resin, ceramic or metal bonded abrasive tools. Diamond has a sharp shape and is the best abrasive tool for grinding hard and brittle materials such as cemented carbide, optical glass, and ceramics. It has a better polishing effect on alloys of different phases with huge differences in soft and hard. In addition, diamond polishing abrasive media have the characteristics of long finishing life, high cutting ability, and strong wear resistance. However, because it is easily carbonized at 700℃~800℃, it is not suitable for finishing steel materials and ultra-high-speed grinding.

    2.1.2 The main components of emery are aluminum oxide (Al2O3), a small amount of iron oxide (Fe2O3) and other impurities. It can be used for finishing and polishing all metals.

    2.1.3 Garnet is the oldest type of polishing abrasive media. It was called Ziyawu in ancient China. It has been used to grind gemstones since the Bronze Age. It gets its name because the crystal particles are shaped like pomegranate seeds. It is mostly used for sandblasting, waterjet cutting, manufacturing coated abrasive tools, filter materials, wear-resistant floor aggregates, etc. It is used in hardware, steel, castings, ceramics, aluminum, wood, and leather industries.

    2.1.4 The main component of quartz sand is SiO2, which is the earliest grinding wheel material and can be used for grinding, polishing, tumbling and sandblasting. The main component of diatomite is also SiO2, which is an ingredient in the manufacture of polishing powder and whetstone. Suitable for finishing and polishing soft metals such as brass, aluminum, and zinc.

    2.1.5 Pumice comes from volcanoes and is the raw material for making polishing powder. Suitable for finishing and polishing soft metals and their alloys, wood, glass, plastic, leather, etc.

    2.1.6 Flint, is a relatively common siliceous rock. Because flint is hard and produces sharp fractures when broken, it was first favored by primitive people in the Stone Age and used to strike and make stone tools. The striking of flint and iron tools will produce sparks, so it was also used as a fire-making tool by ancient people. In ancient China, a small piece of flint and a steel “fire sickle” were often struck to make fire, so flint is also called flint. The modern grinding industry utilizes its hard and sharp edges as grinding materials.

    2.1.7 Silica is the general name for vein quartz, quartzite, and quartz sandstone. The main component is also SiO2. Silica has a wide range of uses. When used in the grinding industry, it can be used to make grinding stones, oil stones, and sandpaper. It can also be used to polish glass, Surface of metal products, sawing and grinding stones, polishing jewelry, etc.

    2.1.8 Feldspar is the general name for feldspar minerals. There are many types, such as albite, anorthite, barium feldspar, barium adolite, microcline feldspar, orthoclase, feldspar, etc. The main component is feldspar. Silicon oxide, aluminum oxide, K2O, sodium oxide, calcium oxide, etc. When used in the grinding industry, it is often used as a bond component in the production of bonded abrasive tools, such as grinding wheels.

    2.1.9 Chalk is calcium carbonate and has a wide range of uses. It is used in the grinding industry as a raw material for tooth powder, toothpaste and other cosmetics.


    2.2 Artificial abrasive media. It is an abrasive material that does not exist in nature and is entirely artificially produced. The main types are:

    2.2.1 Sintered abrasives. Mainly divided into corundum abrasive media, silicon carbide abrasive media and CBN (cubic boron nitride) abrasive media, the varieties are divided into:

    Brown corundum abrasive media. The main component is Al2O3, which has medium hardness, high toughness, sharp particles, relatively low price, and is suitable for processing metals with high tensile strength.

    White corundum abrasive media. Its hardness is slightly higher than brown corundum, but its toughness is poor. It is easy to cut into the workpiece during finishing. It has good self-sharpening, low heat generation, strong finishing ability and high efficiency. Chrome corundum abrasive media is its derivative.

    Single crystal corundum abrasive media. Its particles are composed of a single crystal and have good multi-edge cutting edges, high hardness and toughness, strong grinding ability, and low grinding heat. The disadvantage is that the production cost is high and the output is low, so the price is relatively high.

    Silicon carbide abrasive media. Divided into black silicon carbide abrasives, green silicon carbide abrasives, cubic silicon carbide abrasives, and cerium silicon carbide abrasives. The main component is SiC, which has high hardness, high brittleness, sharp abrasive grains, good thermal conductivity, and strong wear resistance. It is more suitable for processing hard and brittle metal and non-metallic products. At present, the finishing and cutting of most NdFeB magnetic materials is widely used.

    CBN (cubic boron nitride) abrasive media. It is a synthetic super-hard material, its hardness is second only to diamond, and it is an excellent grinding material. Compared with traditional grinding materials, CBN abrasives have excellent grinding performance, especially when grinding cemented carbide, and are more efficient. CBN abrasive media are known as one of the greatest technological advances in the history of the abrasives industry due to their high strength, high wear resistance, excellent hardness close to diamond, and excellent thermal stability. The wear resistance and hardness are more than four times that of traditional abrasives, and its unique chemical properties also make it particularly suitable for grinding ferrous metal materials.
    The thermal integrity of CBN abrasive media and their ability to maintain a sharp cutting edge when machining ferrous materials makes them the product of choice for advanced grinding systems. When grinding ferrous metals, they do not react with each other; when grinding steel alloys, they are not easily oxidized. This makes CBN abrasive media the first choice for high-performance grinding wheels for grinding different materials such as cast iron and hard steel.
    CBN abrasive media can withstand high temperatures of 1300℃~1400℃, are chemically inert to iron group elements, have good thermal conductivity, have high removal rates when grinding steel, have large grinding ratios, and have long tool life. They are ideal for grinding hardened steel, The best abrasive for metals with high hardness and toughness such as high-speed steel, high-strength steel, stainless steel and heat-resistant alloys. In addition, CBN abrasive tools are also suitable for ultra-high-speed grinding, and metal-based CBN abrasive tools will not break even if the linear speed exceeds 250m/s.


    2.2.2 Preformed finishing media.
    There are two types of such finishing media: One is sintered ceramic media; also known as ceramic deburring or polishing media. Corundum sand or silicon carbide powder, quartz powder, alumina and other materials are melted at a high temperature of more than 1,000 degrees and sintered into a finishing media with very high hardness. The other is abrasives media bonded with resin, called resin media, polyester media or plastic media. This type of abrasives media can be made into triangular, spherical, square, conical, cylindrical and other shapes. Each shape of abrasives media has different sizes.


    2.2.3 Steel finishing media.
    It can be made into hard steel balls, stainless steel balls, ballcone, ufo, needles, pins, angle cut cylinder and other shapes. This type of abrasive media has high strength and is not easily broken. It is mainly used for polishing surface brightness.


    2.2.4 Bio-degradable finishing media.
    Commonly used ones include corn cobs, walnut shells, sawdust, shredded felt, shredded leather, etc. It is mainly used in the tumble polishing process. It is used for the final polishing and drying of parts that have been treated with light finishes, and can achieve an effect close to mirror polishing.

    diamond abrasive media
    Artificial brown corundum abrasive media
  • 3. What is tumbling finishing media?
  • Tumbling finishing mediaalso called tumbling abrasive media and mass finishing media, refer to abrasive media that use tumbling, vibrating, rotating and other motion methods to finishing the surfaces of product parts and workpieces. It can be natural abrasive media such as river sand, stones, and plants, but most of them use artificial abrasives, including abrasive media with cutting force and polishing media without cutting force. This artificial abrasive media comes in a variety of shapes, including tri-angle, ellipses, spheres, cylinders, tri-star shapes and other clumps, so it is also commonly called tumbling media. It can be said that tumbling abrasive media are one category of abrasive media, but because natural abrasive media are rarely used now, tumbling media actually refer to tumbling abrasive media in most cases.
    angle cut tri-angle ceramic tumbling media
    sphere ceramic tumbling media
  • 4. What can tumbling finishing media be used for?
  • Tumbling media can deburr, descale, deflash, chamfer, derust, degrease, clean, polish, brighten on metal and non-metallic parts and workpieces. The advantage of this kind of finishing media is that it can quickly finish products in large quantities, automatically, and has the characteristics of low cost, high efficiency, safety and environmental protection.
  • 5. What are the types of tumbling finishing media?
  • Tumbling media are divided into three types of abrasive media: rough finishing, fine finishing and polishing:

    5.1 Rough finishing media, mainly includes brown corundum ceramic media, resin ( plastic) media, divided into heavy cutting force, medium cutting force and light cutting force.

    5.2 Fine finishing media, includes white corundum ceramic media, chrome corundum ceramic media, 3P abrasive media, etc. Because the grit size of the micropowder contained in it is very fine, some of which are nearly 2000-3000 mesh, it can continuously perform micro-cutting on the surface of the workpiece to form a more delicate surface roughness, which is suitable for finishing and polishing precision parts.

    5.3 Polishing abrasive media include high-alumina porcelain media, high-density porcelain media (high-alumina porcelain media with an alumina content of more than 95%), stainless steel media, walnut shell abrasive media, corn cob abrasive media, etc. The main purpose is to improve the gloss and brightness of the workpiece surface.

  • 6. How does tumbling finishing media work?
  • The shapes of tumbling finishing media include triangles, spheres, cubes, cylinders, three-star shapes, etc. The cutting surfaces are straight and angle to form acute angles at different angles. The specifications are also available in dozens of sizes from 1mm to 60mm, which are suitable for each. Finishing and polishing of internal and external surfaces of product parts with irregular and complex shapes, holes, seams, corners and other parts. The main mode of operation is to put the abrasive media and parts together into the working barrel of the tumbling finishing and polishing machine, and use the vibrating, tumbling, rotating and other mechanical movements generated by the machine to cause the abrasives to rub and cut on the surface of the workpiece to achieve the effect of finishing and polishing.
    ShineTec's Hardware Fully Automatic Polishing Machine
  • 7. How to choose the correct tumbling finishing media?
  • There are several factors to consider when purchasing tumbling media:

    7.1 Cutting force. This indicator determines the speed at which the workpiece is ground. Heavy-cutting abrasive media can finish parts faster but produce a relatively rough surface finish. Conversely, light-cutting abrasive media finish more slowly but produce higher surface quality.

    7.2 Durability. Wear resistance determines the service life of abrasive media. Wear resistance is affected by factors such as the quality of various raw materials, the particle size and content of abrasives, the matching degree of binder and corundum sand, the condition of vacuum during molding, and the control of sintering temperature. This is a key indicator reflecting the quality of abrasives.

    7.3 Hardness. Workpieces with different hardnesses require tumbling media with different hardnesses for finishing. The harder the workpiece, the harder the abrasive media is required to polish it. If high-hardness abrasives are used to polish workpieces made of soft materials, they may cause damage to the workpiece. For example, if aluminum alloy workpieces are ground with brown corundum ceramic deburring media, the surface will be dull, corrosion pits (impacting points) and a deformation disturbing layer will be produced on the surface.

    7.4 Shape and size. Different shapes and sizes of product parts require matching abrasive media of different sizes and shapes. Generally speaking, the larger your workpiece is, the larger the media will be, and the smaller the workpiece will be, the smaller the abrasive will be. Particular attention should be paid to the shape and size of the abrasive media so that it cannot get stuck in the inner holes, pipes, gaps, corners, etc. of your product.
    Every user of abrasive media wants to buy high-quality abrasives with fast grinding time, high surface quality and strong wear resistance. Maybe you are looking for where is the best tumbling abrasive media manufacturer? Please contact us. ShineTec masters the key technologies of abrasive production and manufacturing and can provide you with the most cost-effective abrasive media.
  • 8. What is the best tumbling finishing media?
  • To measure the quality of finishing media, the most critical factors are cutting efficiency and wear resistance. However, in terms of production and manufacturing processes, these two are contradictory indicators. To achieve high cutting efficiency, you need to use large-grained corundum sand. However, the larger the particle size of the sand, the easier it is to fall off from the matrix during finishing, affecting the wear resistance of the abrasive and causing high wear. Here it is necessary to master the bonding strength between the sand grains and the binder, find a balance point, and maximize the cutting force of corundum sand while enhancing the bonding strength with the matrix. It requires both high cutting force and strong wear resistance. This is the core technology that produces the best tumbling media.
    tumbling finishing media
  • 9. How long is the service life of tumbling finishing media?
  • The service life of tumbler media typically ranges from several months to several years, depending on the hardness, shape, and size of the workpiece being ground. Workpieces with sharp burrs and edges, sharp edges, flash edges, higher hardness and larger appearance will cause greater loss to the abrasive. The service life is shorter.
    Of course the most basic factor depends on the quality of the tumbler media. Good abrasive media will enhance wear resistance while ensuring grinding efficiency. ShineTec’s tumbler media are mature and stable formulas formed on the basis of dozens of process formula tests. Corundum sand has the best material match with other binders, and the wear resistance of the products is longer than other products on the market in terms of service life. There is a 3 times improvement.
  • 10. How to calculate the volume matching ratio between finishing media and workpiece?
  • What is the most appropriate loading ratio of tumbler media to workpiece during primary finishing and polishing? This ratio depends on the finishing effect you want to achieve. Factors that need to be considered include the material, size, shape of the abrasive media, the material and weight of the workpiece.
    Below is a basic tumbler media : parts ratio guide, please refer to the table below to determine your usage:

    Tumbler Media to Workpiece Volume Ratio Typical Application
    0 : 1 no abrasive media, and the product is self-finishing and polishing, such as some decorative stones for handicrafts.
    1 : 1 Same proportion of tumbler media and products with very rough surface, such as forgings, castings, etc.
    2 : 1 Light finishing, allowing workpieces to collide with each other.
    3 : 1 Minimum ratio for copper, aluminum, zinc and other non-ferrous metal workpieces. The workpieces may collide with each other, so the ratio is suitable for finishing and polishing ferrous metals.
    4 : 1 Average efficiency ratio of non-ferrous metal workpieces. High efficiency ratio for ferrous metal parts.
    5 : 1 Suitable for finishing and polishing non-ferrous metal parts. Workpieces rarely collide with each other.
    6 : 1 Suitable for finishing and polishing of non-ferrous metal products. It is often used for pre-plating treatment of resin media and aluminum and zinc alloy workpieces.
    8 : 1 Suitable for finishing and polishing of non-ferrous metals or precision parts. Less surface roughness and smoothness.
    10:1~20:1 Better polishing quality. Suitable for irregular shapes or fragile workpieces.
    Max No collision between workpieces. One machine polishes one part or each workpiece needs to be separated.
error: 网站内容有版权保护!!