Deburring,descaling, degreasing of stainless steel welded pipe, tube cutting parts, mirror polishing technology

How to remove burrs, oxide scale, degrease and mirror polish stainless steel welded pipe cutting parts?

Stainless steel pipes, tubes can be divided into stainless steel seamless pipes and welded pipes according to the production process. Seamless pipes are produced by perforating, drawing and rolling steel bars, while welded pipes are produced by rolling and welding steel plates. In terms of compressive strength, seamless pipes are better than welded pipes, but the advantages of welded pipes are low cost, simple process and high production efficiency. Today we will share a case of mirror finishing and polishing of a small round tube after sawing from a 304 stainless steel welded pipe, tube. This polishing process solution is also suitable for other hardware parts made of materials such as 201, 316, 321 or nickel-titanium alloys, which require deburring, deflashing, descaling and mirror polishing after sawing, plasma, water jet, electric spark and other cutting processes.

    • jerrylu
    • 2024-06-13
    • 0 Comments

     

Deburring, degreasing and mirror polishing process for stainless steel welded pipe,tube cutting parts

1. The stainless steel welded pipe(tube) cutting parts before polishing
How to remove the burr and oil stain on the surface of stainless steel welded pipe (tube) hardware cutting and processing parts

Materials:

304 stainless steel

Appearance:

surface burrs, oil stain, seam

Shape:

round tube

尺寸:

Ø8*50 MM

Pre-polishing process:

sawing

Post-polishing process:

electroplating

2. Finishing and polishing requirements
  • deburring, descaling of welded seam
  • mirror polishing
3. Polishing process details of stainless steel welded pipe, tube cutting parts:
Process steps: (1) deburring, descaling for rough finishing (2) reduce roughness for fine finishing (3) mirror polishing
Machine and equipment vibratory bowl finishing machine vibratory bowl finishing machine mirror polishing machine
Speed highest highest highest
Tumbling media spherical deburring ceramic media fine finishing media mirror polishing media
Abrasive media to workpiece 4:1 6:1 8:1
Chemical compound finishing compound polishing compound polishing paste
Water appropriate amount, liquid level does not exceed abrasive media appropriate amount, liquid level does not exceed abrasive media no
Polishing time 120 minutes 60 minutes 180 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water mirror polishing
4. The stainless steel welded pipe(tube) cutting parts after polishing
stainless steel welded pipe, tube hardware cutting parts deburring, degreasing, mirror polishing effect
deburring, degreasing, polishing effect comparison of stainless steel welded pipe, tube hardware cutting parts

5. Additional instructions
  • This stainless steel welded pipe, tube cutting hardware parts product is a small product made by sawing the welded tube. There are obvious burrs on both ends of the pipe, tube, but the tube wall is thin, which can easily cause deformation of the workpiece during polishing. Therefore, the rough finishing and polishing machine uses a vibratory bowl polishing machine with moderate finishing force and high cutting efficiency. The rough finishing uses heavy-cutting spherical ceramic deburring media, which can quickly remove burrs, scales and oil stains.
  • Fine finishing uses precision finishing media with light cutting force and small abrasive grain size to further reduce surface roughness.
  • The last step after fine finishing is to use a mirror polisher and mirror polishing media to enhance the brightness and mirror polishing.

6. Final summary
  • In this case, we demonstrated the process of automated deburring, degreasing, mirror polishing of the outer surface of a 304 stainless steel welded pipe, tube cutting hardware part.
  • If you need professional technical support for deburring, finishing and polishing of stainless steel, nickel-titanium alloy, cemented carbide and other precision hardware parts, cut parts, processed parts, finished products or the following products using sawing, plasma, water jet, electric spark and other processes, you can refer to the above cases:
    Stainless steel mirror polishing method
    Stainless steel mirror polishing machine
    Stainless steel mirror polishing process
    How to polish stainless steel to a mirror effect
    The best way to deburr stainless steel
    How to deal with stainless steel burrs
    Stainless steel hole burr removal
    What to use to cut stainless steel without burrs
    How to deal with burrs on stainless steel laser cutting
    How to deburr stainless steel pipes, tubes
    What to use to deburr stainless steel pipes, tubes
    How to deburr stainless steel welded pipes, tubes
    How to deal with stainless steel welded pipes, tubes
    How to remove burrs from stainless steel pipes, tubes
    How to deburr small stainless steel parts
    How to cut stainless steel pipes without burrs
    Stainless steel pipe, tube cutting method

Superhard material laser cutting diamond product parts deburring, descaling, smoothing and polishing technology method

How to deburr, descale, smooth, finish and polish the superhard material laser cutting diamond product parts?

Diamond is a single crystal composed of regularly arranged carbon atoms. After cutting, finishing and polishing, diamond becomes a collectible diamond. Diamond is the simplest of all gemstones and the hardest substance naturally existing in nature. With this physical property, diamond is also widely used in the industrial field. Today we will share a case study of finishing and polishing a small slice of diamond synthetic material. Since the workpiece is processed by laser cutting technology, this polishing process method is also suitable for deburring, descaling, chamfering and polishing other precision machining parts of superhard materials such as plasma, water jet, wire cutting.

    • jerrylu
    • 2024-06-06
    • 0 Comments

     

superhard material laser cutting diamond product parts deburring, descaling, finishing and polishing technology method

1. Superhard material laser cutting diamond product parts before polishing
burrs and oxide scale of laser cutting diamond parts of superhard material

Materias:

synthetic diamond materials

Appearance:

burrs, oxide scale, zigzag edge

Shape:

ractangular

Size:

15*15 MM

Pre-polishing process:

laser cutting

Post-polishing process:

assembly

2. Finishing and polishing requirements
  • deburring, descaling.
  • smooth surface, low roughness.
3. Diamond superhard material parts polishing process details:
Process steps (1) deburring, descaling for rough finishing (2) fine finishing for reducing roughness
Machine and equipment centrifugal barrel finishing machine centrifugal barrel finishing machine
Speed highest highest
Tumbling media angle cut tri-angle silicon carbide deburring media precision finishing media
Abrasive media to workpiece 4:1 6:1
Chemical compound finishing compound polishing compound
Water appropriate amount,the liquid level is 30mm above the abrasive media appropriate amount,the liquid level is 30mm above the abrasive media
Polishing time 120 minutes 60 minutes
Remark parts separated and picked up automatically, rinsed with water parts separated and picked up automatically, rinsed with water
4. Superhard material laser cutting diamond product parts after polishing
deburring, descaling, polishing of laser cutting superhard material diamond product parts
polishing effect comparison of laser cutting superhard material diamond product parts

5. Additional instructions
  • This superhard diamond material part is a small precision product, so the rough finishing and polishing machine uses a centrifugal barrel finisher, which has strong finishing force and high cutting efficiency. Diamond is a superhard material with high hardness, so the tumbling media uses silicon carbide abrasives media with higher cutting force than heavy-cut ceramic deburring media, which can achieve the effect of quickly removing burrs and oxide layers.
  • Fine polishing uses precision finishing and polishing abrasives media with light cutting force and small abrasive grain size to further reduce surface roughness.

6. Final summary
  • In this case, we demonstrated a process for automated deburring, serrated edges smoothing, descaling, chamfering and polishing of the outer surface of a laser-cut superhard diamond component.
  • If you need professional technical support for deburring, descaling, chamfering and polishing of precision hardware accessories, workpieces or the following products such as plasma, water jet, wire cutting, etc., you can refer to the above cases:
    How to finish diamond
    How to polish diamond
    Methods for deburring diamond
    What diamond is cut and polished
    Deburring and polishing process for diamond products
    Deburring and polishing process for diamond materials
    Deburring and polishing process for diamond parts
    Diamond mirror finishing and polishing
    Laser cutting deburring machine
    How to remove burrs from laser cutting
    How to solve burrs when laser cutting
    Jagged waves appear in laser cutting
    How to deal with burrs from laser drilling
    What method is used to deburr high-hardness materials
    Polishing method for superhard materials

How to deburr, descale, polish laser cutting workpieces?

How to remove burrs, flash, scale, chamfer, oil and dirt on laser cut parts? ShineTec is your reliable service manufacturer.
The mass finishing and polishing machines, equipments and tumbling abrasive media we produce can well meet the surface finishing treatment requirements of special-shaped laser cutting workpieces, water jet cutting parts, plasma cutting parts, and flame cutting parts. Depending on your actual production capacity and operating environment, we can help you achieve the best product finishing and polishing process. No burrs, No flash on parts. Efficient equipment and high-quality finishing abrasive media ensure the final surface quality of your products.

Deburring, deflashing and polishing of carbon steel and alloy steel laser cutting parts

Deburring, deflashing of carbon steel and alloy steel laser cutting parts

For parts such as stainless steel and high carbon steel, Ceramic Deburring Media with heavy cutting force are generally used, and a vibrating finishing and polishing machine is used with chemical finishing compound to achieve high finishing efficiency, strong processing capabilities, and a lower surface roughness.

Deburring, deflashing and polishing of aluminum-magnesium alloy laser cutting parts

Deburring,deflashing of aluminum-magnesium alloy laser cutting parts

Because the product material is relatively soft, high-density, color-contaminated Ceramic Deburring Media are not suitable for polishing this aluminum-magnesium alloy product. The best tumbling media is Resin Media, also called Plastic Media, Polyester Media.

Deburring, deflashing and polishing of brass and copper laser cutting parts

Deburring, deflashing of brass and copper laser cutting parts

Also because the product has a soft texture, resin tumbling media are also needed to deburr and deflash. After finishing and polishing, the surface color of the product can maintain its original color, and no contamination by ceramic tumbling media will occur.

Deburring, deflashing and polishing of stainless steel plate laser cutting parts

Deburring, deflashing of stainless steel plate laser cutting parts

Laser cutting workpieces made of thin steel plates and galvanized sheets also need to use high-cutting ceramic deburring media, with a vibratory finishing and polishing machine with Finishing Liquid Compound. If the workpieces stick to each other, Chemical Compound need to be added to prevent sticking.

Sheet metal laser cutting parts deburring deflashing and polishing

Deburring, deflashing of sheet metal laser cutting parts

Using a ceramic media such as a triangle with sharp corners or a beveled cylinder, you can deburr and polish deep into the corners, inner holes, gaps and other parts of the workpiece.

Deburring, deflashing and polishing of plastic and acrylic laser cutting parts

Deburring, deflashing of plastic and acrylic laser cutting parts

Laser cutting workpieces made of plastic or acrylic are suitable for polishing with high density porcelain tumbling media. This tumbling media does not contain abrasive sand, has no cutting force, and will not scratch the surface of the product.

  • 1. What are laser cut parts?
  • Laser cutting parts are workpieces produced using laser cutting processing technology. It is used in spare parts for products with high precision requirements in various industrial fields.
  • 2. Why do laser cut parts need to be deburred?
  • Laser-cut parts produced during processing must undergo surface treatment processes such as deburring and polishing.
    The benefits of applying this finishing process are as follows:

    2.1 Remove oxide layer.
    Laser cutting uses gases such as oxygen or carbon dioxide as assistance. These gases will form an oxide layer on the surface of the product during high-temperature cutting. It may corrode or rust the parts, so you must polish these cutting parts to remove the oxide layer.

    2.2 Improve product appearance quality.
    The appearance of a product affects its quality. If you are a practitioner of machined parts, using the deburring and finishing process can provide a beautiful and uniform appearance to the workpiece.

    2.3 Repair product surface quality.
    The laser cutting process may cause certain appearance defects to the workpiece, such as silk lines, cracks, pitting, etc. Through finishing and polishing, these defects can be repaired, thereby improving product yield and reducing production costs.

    2.4 Chamfer processing.
    Laser cutting will produce sharp edges or corners, which may cause harm to users during use.
    After chamfering, sharp edges can be removed and sharp corners can be smoothed and rounded. It can also reduce product stress, which affects product durability and quality stability.

    2.5 Produces a special matte effect.
    Some products may require a matte finish. This demand can be met by using appropriate tumbling abrasive media and correct finishing and polishing processes.

    2.6 Improve security.
    Flashes, sharp edges, and sharp corners on the surface of the workpiece may cause harm to the user. Therefore, it is necessary to use a deburring and finishing machine for polishing in the subsequent process to improve the surface quality of the product.
  • 3. Can you explain the method of deburring from laser cutting workpieces?
  • Currently, many laser-cut parts are still polished manually. For example, traditional deburring methods such as sandpaper, power tools with grinding heads, belt sanders, and grinding wheels are used.
    These backward polishing methods are inefficient, not environmentally friendly, and also bring many safety hazards.
    Some new deburring processes include ultrasonic, thermal energy, electrochemical, sandblasting, shot blasting and other methods. Each has its own characteristics and limitations.
    The tumbling finishing and polishing process we currently provide is a low-cost, high-volume, and high-efficiency mechanized deburring and polishing method, which is especially suitable for some special-shaped laser cutting parts with complex cavities.
  • 4. What kind of equipment is the laser cutting workpiece deburring machine?
  • Laser cutting parts polishing machine is a machine used to deburr, descale, chamfer, clean, degrease, and polish and brighten laser cut products. Using the right tumbling abrasive media and choosing the right machine type will make your process more efficient. At the same time, it can also reduce labor costs, reduce labor intensity, and improve production efficiency.
  • 5. What are the advantages of laser cutting parts finishing and polishing machines?
  • The benefits of laser cutting parts deburring and polishing machines are as follows:

    5.1 Lower processing costs. Manual deburring requires high labor costs, more tools and abrasive material losses. Our finishing and polishing machine for laser cutting is a one-time investment. Later, you only need to purchase some tumbling media, chemical compound liquid regularly. Only very little manual participation is required during the processing, so labor costs will be greatly reduced.

    5.2 Save time. It is obvious that machine deburring and polishing can greatly save operating time compared to manual polishing. Your productivity can be greatly improved.

    5.3 Non-destructive surface treatment. Use suitable matching tumbling finishing media and choose the correct mass finishing equipment. After completing the polishing processes such as deburring and descaling, your product workpiece will not change in shape, position and size. It is a lossless process. If it is polished by hand, due to the different handling strength of each workpiece, it may have an impact on the size of the product, and each one is not uniform.

    5.4 Get the best surface quality. The quality of product appearance determines the quality of the product. Manual polishing cannot achieve a consistently stable product surface quality. But a polishing machine can give you a consistent look. Finishing time and surface roughness level can be controlled, helping you to stand out in the fierce market competition.

    5.5 Save labor. At present, the labor cost of product polishing process accounts for a large proportion of the overall product cost. ShineTec’s finishing and polishing machine allows a single worker to perform multiple batches of mechanized deburring, descaling and polishing, which will save a lot of labor costs and greatly reduce labor intensity.

    5.6 High-volume polishing. Our finishing and polishing solutions are characterized by high-volume, high-efficiency, mechanized automatic finishing. Laser cutting parts of different shapes and sizes can be processed in the same polishing machine. If combined with automated assembly lines, your production efficiency and product quality can be greatly improved.

    5.7 Extremely low maintenance costs. The daily maintenance cost of the machine and the loss of tumbling media are the most important factors for business owners to consider. ShineTec’s finishing and polishing machines have almost no maintenance costs. In addition to regularly adding a little lubricant to the motor, there are no other special tools that need to be purchased.

    5.8 No specially trained operators are required. Manual finishing and polishing requires special training for operators first. This is a high labor cost and an uncontrollable link in the production process. The mass finishing machines we provide are very simple to operate. Workers only need to load and unload materials. The polishing process of the machine does not require manual participation.

    5.9 Safe production environment. Laser-cut parts may have sharp corners, burrs or flash edges, which may cause harm to front-line workers. Debris generated during manual polishing may also enter people’s eyes or cause skin allergic reactions. Using finishing and polishing machines can avoid these phenomena. Provide production workers with a safe and reliable production working environment.

    5.10 Improve the adhesion of electroplating, paint and coatings. Some laser-cut parts may require electroplating, painting or coating treatment in the final stage. If polished by hand, the appearance of the product will be inconsistent, resulting in unstable surface quality of the finished product. After using our tumbling finishing and polishing, there will be a uniform surface quality before subsequent surface treatment, and a reliable and stable product quality will be obtained later.
  • 6. What types of laser cutting parts deburring machines does ShineTec have?
  • ShineTec provides different tumbling finishing and polishing machines that can be used to polish laser cut parts. They are vibratory/vibrating deburring and finishing machines, centrifugal barrel finishing machines, centrifugal disc finishing machines, and barrel tumbling finishing machines. Depending on the material, shape, specification and size of the workpiece, we can select the correct machine model and matching ceramic deburring media, porcelain polishing media and other tumbling media to meet your process requirements.

    6.1 Vibratory Finishing Machine. Vibration type, also called vibrating finishing and polishing machine, is the most commonly used equipment for deburring and polishing laser cutting parts. It is characterized by strong applicability, large processing capacity, easy operation, convenient loading and unloading, and controllable process. Generally, small and medium-sized special-shaped workpieces can be processed. The disadvantage is that it is not easy to penetrate deep into the cavity.

    6.2 Centrifugal Barrel Finishing Machine。 The centrifugal barrel finishing type, is a device suitable for finishing and polishing some small-sized laser cutting workpieces. It is characterized by strong cutting force, short processing time, and the ability to penetrate deep into the inner holes and gaps of the workpiece. The disadvantage is that the processing capacity is not large at one time, and loading and unloading is time-consuming.

    6.3 Centrfugal Disc Finishing Machine。 The centrifugal disc finishing machine is suitable for processing some laser cutting workpiece products with large burrs. It is characterized by the strongest cutting force, short processing time and easy loading and unloading. Generally speaking, compared with vibratory polishing machines, the finishing and polishing efficiency can be increased by about 30 times. The disadvantage is that it is not suitable for some thin laser cutting parts and is easy to deform or get stuck in the gaps of the machine chassis.

    6.4 Tumbling Barrel Finishing Machine. Also called rotary barrel polishing machine. It is suitable for parts with high surface polishing brightness and gloss requirements. It is characterized by slow work and careful work, combined with special abrasive media, such as walnut shells, corn cobs, wood, bamboo chips and other plant abrasives, and polishing paste, which can bring a mirror-like shiny surface effect. The disadvantage is that the processing time is slow and the efficiency is low. Some parts may need to be processed for several days at a time. It is also not suitable for some easily deformed laser cutting workpieces.
  • 7. What deburring abrasive media are used in laser cutting parts deburring machines?
  • The tumbling media used for finishing and polishing laser cutting parts are also called mass finishing media. ShineTec offers a wide range of abrasive media. The factors that affect the quality of abrasives mainly include cutting force, wear resistance, specific gravity density, hardness, appearance size, color and other indicators. High-quality raw materials and scientific production process control bring high-quality abrasive media. The main types are as follows:

    7.1 Brown Corundum Ceramic Deburring Media. Brown corundum ceramic media is a commonly used abrasive material used for deburring, descaling, deflashing and finishing of laser cutting parts. Suitable for hard metal parts. The deburring ceramic media provided by ShineTec are available in triangular, cylindrical, spherical, conical, three-star, oval, pyramid, tetrahedral and other shapes. Each shape has different specifications and sizes. Each abrasive media also has different cutting force levels. Heavy cutting force deburring media are used for workpieces that require a lot of finishing and cutting force, and light cutting force deburring media are used for some product workpieces that require a lot of smoothness.

    7.2 High Alumina Porcelain Media. High-alumina porcelain media do not contain brown corundum sand with strong cutting force. Therefore, this tumbling polishing media has no cutting force and cannot be used for deburring, descaling and other processing. Because of the high alumina content, the polishing abrasive media formed after final sintering has a large specific gravity, dense internal structure, and strong hardness. It is suitable for polishing processes that improve the surface brightness of laser cutting workpieces. The greater the specific density, the higher the surface brightness of the treated product. The appearance color is porcelain white, and the shapes are generally spherical, triangular, cylindrical, oval, etc.

    7.3 Resin Media。 Tumbling resin media are also called Plastic Media, Polyester Media. Because they have a moderately elastic surface, they are suitable for polishing and polishing laser cutting parts produced from soft metals such as aluminum alloys. Resin grinding stone is an abrasive material made of resin mixed with corundum sand powder through a curing reaction. It is also suitable for deburring and polishing workpieces made of materials such as copper and plastic. ShineTec can provide resin abrasives in conical, pyramid, triangular, three-star, bullet and other shapes. Brown corundum sand containing different mesh numbers can bring different cutting forces, and can also be divided into heavy cutting, medium cutting, and light cutting grades.

    7.4 Stainless Steel Media。 This polishing media is made of stainless steel. Because it has no cutting force and a density of up to 7.8 g/cm3, it is also used to polish the surface brightness of laser-cut parts. The specific gravity is more than three times higher than that of high-alumina porcelain polishing media, and the surface brightness obtained after polishing is also far superior to that of high-alumina porcelain polishing media. The shapes include ball, ballcone (ufo), and pin shapes, which are suitable for brightening metal workpieces.

    7.5 Mirror Polishing Media. It is mainly produced by processing walnut shells, corn cobs, cork pellets, bamboo chips, etc. In addition to their finishing and polishing functions, walnut shells and corncobs are also used to dry cleaned workpieces in a vibration dryer because of their strong water absorption. Vegetable tumbling media are mainly used to polish the surface brightness of laser cutting parts. When used in conjunction with a barrel tumbling polishing machine, a mirror-like bright effect can be achieved.
  • 8. Which products’ laser-cut parts can be used with this tumbling finishing deburring and polishing machine?
  • The laser cutting parts polishing machine provided by ShineTec can handle workpieces made of the following materials:

    8.1 Stainless steel laser cutting parts. This is the most commonly used workpiece material. Used in healthcare, automotive parts, electronics, machinery and other industries.

    8.2 Aluminum alloy laser cutting parts. For example, the framework of digital products.

    8.3 Laser cutting parts in copper. Brass is easily oxidized in the air and turns black. Its original appearance can be restored by polishing and brightening.

    8.4 Plastic laser cutting parts. Used in medicine, automobile, aviation, electronics and other industries.

    8.5 Thin sheet laser cutting parts. It is easy to form sharp edges after laser cutting, which also require polishing and rounding.

    8.6 Bending laser cutting parts. Triangle tumbling media are very suitable for deburring and polishing products.

    8.7 Acrylic laser cutting pieces. Used in construction, advertising, machinery and other industries.

    8.8 Carbon fiber laser cutting parts. Most carbon fiber products are cut using lasers.

    8.9 Carbon steel laser cutting parts. This product is very versatile.

    8.10 Alloy steel laser cutting parts. Such as chromium alloy, manganese alloy, tungsten alloy, titanium alloy and other components.

Can plasma finishing and polishing achieve a mirror polishing effect?

Plasma polishing has been widely used in fine polishing applications of high-end products, such as furniture and bathroom tableware industry: handles, handles, faucets, copper parts; glasses industry: glasses frames, glasses frames; aerospace manufacturing: aircraft engine blades; medical device manufacturing Industry: titanium alloy, stainless steel equipment and other fields.

1. What is plasma polishing?

Plasma polishing, also known as nano-polishing, is a new finishing and polishing process for deburring, descaling, and improving brightness on the surface of metal product workpieces. In essence, it is also electrolytic polishing. Under the action of large current, the electrolyte is vaporized and high-energy plasma is generated to impact the surface of the product to achieve a polishing effect. It is suitable for large quantities of special-shaped workpieces with complex curved surfaces to quickly and efficiently achieve a near-mirror polishing effect. So what kind of surface polishing effect can plasma polishing achieve? Today we will share a case in which deep-drawn stamping parts made of 304 stainless steel were treated with plasma polishing to remove burrs and oxide scale to achieve mirror polishing. Take a look at the specific advantages and disadvantages of this process and whether it can meet your finishing and polishing needs.
Let’s take a look at the comparison of the effects of plasma polishing on this stainless steel stamping part:

Surface effect of stainless steel deep-drawn stamping parts before plasma polishing

Surface effect of stainless steel stamping parts before plasma polishing(nano-polishing)

We can see that the surface of the original surface of this workpiece has lines left after cold rolling, and there are obvious stretch marks left after stretching on the edges. The upper opening has obvious burrs left after punching and cutting. It feels prickly and can cut your skin if you’re not careful.

Surface effect of stainless steel deep-drawn stamping parts after plasma polishing

Surface effect of stainless steel stamping parts after plasma polishing(nano-polishing)

Now the surface of the product is shiny, and the oxide scale on the internal and external surfaces has been removed. The original cold rolling marks are almost invisible when viewed from the front. The stretch marks on the edges have also become much reduced. The upper opening feels better to the touch. It should be smooth, no tingling feeling, and the burrs should have been removed.

2. Scope of application of plasma polishing

Now we fix the stainless steel deep drawing stamping part on the hanger and put it into the plasma polisher. After waiting for 2 minutes, you can see that its surface is now shiny and the original oxide layer has been completely removed. We Let’s take a look at the overall surface condition. The cold-rolled marks on the surface of the original part before polishing is still quite obvious. Look at the stretch marks on the edge. You can still see the obvious stretch lines. Let’s touch the cut part at the opening, the hand feels relatively rounded, does not irritate the hand, and the burrs have been removed. The internal and external surfaces of the entire product have uniform polishing quality and high brightness. It should be said that it is quite beautiful. Let’s sum it up. If your products are small pieces with relatively small burrs, smooth original surfaces condition, complex shapes, and large quantities, then plasma polishing can meet your needs and achieve a mirror polishing effect. If you want to remove larger burrs, flashes, scratches, and thicker oxide layers through plasma polishing, then plasma polishing cannot meet your requirements. Friends, do you now understand the characteristics of plasma polishing?

What is the best deburring, finishing and polishing process method?

In the manufacturing process of machining, powder metallurgy, plastic injection molding, metal casting, electronic appliances, medical equipment, aerospace, 3D printing, jewelry, instrumentation, jewelry and other industries, we will all encounter surface treatment problems. We are also frequently exposed to the two professional terms finishing and polishing, so do you know what the differences are between different finishing and polishing process methods? What is the best commonly used finishing and polishing process? The following is an introduction to various finishing and polishing processes.

1. What is finishing?

Finishing uses abrasive tools and media to cut the surface of the workpiece under a certain pressure. Product workpieces can be made of various metal or non-metallic materials, and the processed surface shapes include flat surfaces, arc surfaces, concave and convex surfaces, threads, tooth surfaces and other special-shaped surfaces.
Finishing can be achieved by manual or mechanical automation. It is the preliminary stage of surface treatment. The main purpose is to remove scale, deburr and level.
According to the different grit size of the abrasive media, it is divided into heavy cutting, medium cutting and light cutting, which correspond to different cutting strengths. The stronger the cutting force, the higher the efficiency, but the higher the surface roughness.
The manual finishing method mainly uses grinding tools such as grinding wheels, sandpaper, wire brushes, and grindstones to grind the surface of the workpiece. It is a surface treatment process with maximum cutting intensity and has the greatest impact on the accuracy and appearance dimensions of the product. The advantage of manual finishing is that it requires less equipment investment, is convenient and fast, and is suitable for various complex cavities. The disadvantages are high labor costs, low efficiency, unfriendly environment, poor safety, and inconsistent surface quality. It is a process that will be phased out.
The automated finishing method uses professional finishing machines and equipment to perform batch mechanized grinding of the workpiece surface. At present, there are several special machines and equipment below that can be used for automatic finishing in large quantities.

Surface grinding lathe deburring and scale grinding and polishing

Grinding lathe

Divided into internal and external cylindrical or surface grinders, belt sanders, grinders, etc. Internal and external cylindrical grinders are used to grind the cylindrical internal and external surfaces of product workpieces. Surface grinders are used to grind flat parts to obtain a smooth and flat outer surface. Abrasive belts and grinders are also operated by manual single parts and are suitable for medium and large-sized components. The advantages of this kind of grinding machine are simple operation, high cutting force, the ability to cut and grind different parts with different strengths, and the ability to process products of medium and large dimensions. The disadvantage is that the purchase cost of the machine equipment is high and it can only process a single product. It can only grind product parts with simple shapes, but cannot handle workpieces with complex surfaces and irregular internal holes, holes, gaps and other parts.

Robotic deburring, grinding and polishing of automotive aluminum alloy wheels

Industrial robot

This is an advanced grinding processing equipment. By setting a fixed motion path through PLC programming, and using the grinding head, workpieces with complex internal and external surfaces can be automatically ground. For example, some stainless steel, aluminum alloy, zinc alloy and other kitchen utensils, bathroom hardware, car wheels, etc. The advantage of this equipment is that grinding and finishing can be integrated into one piece, and different surface treatment processes can be achieved by replacing different grinding heads. It is also suitable for processing medium and large complex-shaped product parts. It can also control the finishing of a certain part of the product individually, and has strong defect repair capabilities. The disadvantage is that the purchase cost is high, the investment in supporting facilities is also large, it can only be processed in a single piece, the efficiency is low, the operation and maintenance are complicated, and the inner surface of the product cannot be processed.

Sandblasting, deburring, descaling, grinding and polishing

Sand blasting machine

This is the most widely used grinding treatment method. Sandblasting is a machine that uses compressed air as power to eject high-speed abrasive sand chip to remove scale, burrs, and flash on the surface of the product. Suitable for some medium and large-sized products, such as cast iron parts, forgings, machined parts, large turbine blades, etc. Shot blasting is to throw small steel shots through a high-speed rotating impeller, impact the surface of the part, and remove the oxide layer. The advantage of this grinding method is that it is suitable for extra large or medium-sized product workpieces, can handle complex shapes, and can improve the metallographic structure of the product surface and improve the surface mechanical properties. The disadvantages are high investment cost, small batch processing at one time, not suitable for small workpiece products, high surface roughness after treatment, and cannot handle the inner surfaces of the product’s inner holes, pipes, gaps, etc.

Abrasive flow,inner hole deburring, descaling, polishing

Abrasive flow machining for deburring and descaling

Also called AFM deburring and finishing. This method is widely used for in-hole deburring and descaling of various precision parts. Its operating principle is to mix diamond, white corundum sand, silicon carbide and other abrasive sand with the abrasive flow to prepare a semi-fluid finishing media, which quickly passes through the holes inside the workpiece under the pressure generated by the machine, and uses the abrasive sand to polish the inner wall. Cutting to achieve the finishing effect of deburring and descaling. The advantage of this method is that it is particularly suitable for deburring and polishing the inner surfaces of precision parts with complex inner holes. The disadvantage is that its finishing efficiency is low and it cannot be processed in batches. It can only be used for polishing inner holes below 500mm. The cutting amount is only within a few microns. It cannot remove large burrs, turning lines, oxide skin, rust spots, etc. Special tooling fixtures are also required, and the one-time investment cost is also high.

Magnetic grinding, deburring, polishing, descaling, degreasing, cleaning

Magnetic polishing machine

Magnetic polishing uses magnetic force to drive the stainless steel needles in the working barrel of the machine to produce high-frequency motion and impact the internal and external surfaces of the workpiece to achieve the effect of deburring, descaling, deflashing, brightening from the inner holes, dead corners, gaps, and other parts of the hardware workpiece. Suitable for finishing and polishing metal or hard plastic non-metal workpieces. The advantage of this polishing method is that it is suitable for irregular and complex special-shaped parts. Deburring, descaling and polishing can be completed in one go. It does not deform, does not affect the dimensional accuracy of the workpiece, and does not damage the surface. The surface roughness can reach Ra0.1-Ra0.01. It can be processed quickly in batches. It takes 5-20 minutes in polishing, has high efficiency, no loss of consumables, and low investment. The disadvantage is that the machine’s processing capacity is generally within tens of kilograms at a time, and it is only suitable for workpieces of smaller sizes, such as small hardware, small ornaments, precision parts, etc.

tumbling finishing and polishing to deburr, descale, deflash, derust, chamfer, degrease

Mass finishing machine

This is the most widely used surface finishing method and is also a professional equipment in the field of batch finishing. Contains models with multiple motion patterns, using vibratory finishing, centrifugal barrel finishing, centrifugal disc finishing and other methods drive the tumbling deburring media and workpiece to tumble and rotate in the working barrel of the machine, let the abrasive to cut on the surface of the workpiece to remove burrs and oxidation skin, flash, oil stain and other effects. The abrasive media has a very high hardness after being sintered at high temperature, like stones, so it is generally called ceramic media, also called tumbling media. Materials include brown corundum, white corundum, silicon carbide, etc. Commonly used shapes include triangle, spherical, cylindrical, three-star, cone, and tetrahedron. There are also various specifications and sizes, which are used to finish workpieces of different materials and shapes. The advantages of this finishing method are wide application range, large batches and high efficiency. The shape of the workpiece can be irregular and special-shaped. Internal holes, dead corners, cracks, cross holes and other parts can be finished. The size can range from a few millimeters to 3 meters, the dimensional accuracy of the product is not affected, and the workpiece materials can be supported from non-ferrous metals, ferrous metals, powder metallurgy, plastic, acrylic, rubber, bamboo, marble, glass and other non-metal materials. The investment cost is low and the operation is simple and convenient. The disadvantage is that it can only finish the entire workpiece and cannot control the finishing of a single part. For example, it is impossible to level a certain convex part of the product. Also, if the inner hole or pipe length of some products exceeds 30mm, the effects of rust removal and descale on the inner surface will not be satisfactory.

2. What is polishing?

Polishing refers to a processing method that uses manual, mechanical, chemical or electrochemical methods to reduce the surface roughness of the workpiece to obtain a shiny and bright surface. Generally speaking, polishing is performed after finishing and is a later stage of surface treatment. Polishing cannot improve the dimensional accuracy or geometric shape accuracy of the workpiece, but is intended to obtain a smooth surface or mirror gloss. Sometimes it is also used to eliminate gloss (matting), such as to obtain a matte effect. The main polishing methods are as follows:
1. Artificial polishing.
The manual polishing method mainly uses professional tools such as polishing wheels, polishing heads, and angle grinders to apply polishing paste on the polishing wheel and press it against the product surface while rotating at high speed, allowing the abrasive to roll and micro-cut the workpiece surface. This results in a shiny surface effect. The surface roughness of the polished product can reach Ra0.6~0.01 micron. Like manual grinding, the advantage of manual polishing is that it requires less equipment investment, is convenient and fast, and is suitable for irregular shapes and internal surfaces. By using polishing and abrasive media of different mesh sizes, a mirror polishing effect can be achieved, which is the best among all polishing methods. The disadvantages are that the labor cost is too high, training is required to get on the job, efficiency is low, the environment is unfriendly, safety is poor, and surface quality is inconsistent. It is a process that will be phased out. At present, it is only used when polishing some medium and large kitchen and bathroom products.
2. Mechanical polishing. Use professional polishing machines and equipment to perform batch mechanized polishing of workpiece surfaces. At present, there are several special machines and equipment below that can be used for automatic polishing in large quantities:

Automated industrial robot polishing mobile phone case

Industrial robot

A cloth wheel is installed on the robotic arm and products with irregular and complex surfaces can be polished according to the set motion trajectory. At present, many kitchen and bathroom hardware, decoration, automobile wheel and other industries have begun to use this robot-automated polishing method extensively. By replacing the cloth wheel and polishing paste with a finer grit size on the surface of the product that has been ground in the previous process, the same equipment can achieve the polishing function. Its advantage is that it is suitable for processing medium and large product parts with complex shapes, and can also achieve mirror effects. The disadvantage is that the purchase cost is high and the investment in supporting facilities is also high. It can only be processed in a single piece, with low efficiency. The operation and maintenance are complicated. It cannot handle the inner surfaces of the product such as holes and gaps.

Shot blasting, shot blasting polishing machine

Shot blasting machine

Shot blasting or shot blasting machines can also be used for polishing. They use stainless steel shot media to hammer the surface of metal parts at high speed to increase surface density and achieve the effect of improving surface gloss and brightness. The advantage is that it is suitable for medium and large parts, and can also handle complex curved surface cavities. The disadvantage is that the polishing roughness is high, which can only increase the gloss and brightness, but cannot achieve a mirror-like polishing effect. In addition, it can only be used for surface polishing of product parts made of metal.

Magnetic polishing machine

Magnetic polishing machine

Magnetic polishing machine integrates the finishing and polishing processes into one. It uses the high-speed rotation and rolling of stainless steel needles to impact the surface of the workpiece. It removes burrs, scale, oil and impurities while improving the surface brightness of the product, achieving the purpose of polishing. The advantages are high efficiency, no loss of consumables media, and low investment. The disadvantage is that the number of processes is small, it is only suitable for small product parts, and the surface roughness after polishing is relatively high.

mass tumbling polishing

Tumbling polisher

It can also be called a mass polishing machine, polishing tumbler. Based on the rough finishing of descaling and deburring in the previous process, by replacing different polishing media, the roughness of the product surface can be reduced and the brightness can be improved. Abrasive media for polishing are generally usedporcelain polishing media, high-density porcelain media (In fact, this is also a type of porcelain, but the alumina content in it is higher than that of common porcelain media, can reach about 95%, so the density is higher than that of common porcelain media), white corundum polishing media, chrome corundum polishing media, stainless steel polishing media. The principle is to use high-density, high-hardness tumbling media to hit the surface of metal products to change the tightness of the arrangement between grains. At the same time, the micro-powder contained in the polishing media is used to perform micro-cutting on the surface, reducing roughness and improving brightness and gloss. There is also a polishing method commonly known as polishing, which is to use barrel tumbling polishing machine uses plant bio-degradable such as wood chips, bamboo chips, corn cobs, and walnut shells. It uses the coarse fibers on the surface of this material to simulate the cloth wheel used for manual polishing, and with the polishing paste, it passes Dozens of hours of slow and micro-finishing achieve a mirror-like effect. The advantage of rotary tumbling polishing is that it has a wide range of applications, large batches, and high efficiency. It can be used for product parts with various special shapes and complex surfaces. The materials can also be metal and non-metal materials. The operation is simple and convenient. The disadvantage is that the polishing effect cannot reach the mirror state of a manual cloth wheel. The smooth polishing method can only achieve an effect close to a mirror surface at best.

3. Chemical polishing.
Chemical polishing is a method that relies on the chemical corrosion of chemical reagents to selectively dissolve uneven areas on the surface of the product to eliminate oxide scale and etch and level it. Using strong acid or alkaline solutions such as sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid or sodium hydroxide, the principle is that the convex parts on the surface of the metal parts have a different electrode potential than the concave parts in the solution, resulting in different dissolution rates, causing the convex parts to It dissolves preferentially over concave parts and can remove rough surface roughness and obtain a smooth finish ranging from an average of several microns to tens of microns. The advantage of this polishing method is that the equipment is simple and only requires a container to hold the solution. It can handle thin tubes, parts with deep holes and complex shapes, and has high production efficiency. The disadvantages are obvious: it is not environmentally friendly, has serious pollution, emits a large amount of harmful gases, has a short service life of the polishing solution, and is difficult to regenerate. The polishing effect is not as good as electrolytic polishing.

Chemical deburring and descaling, polishing

Chemical polishing process

Comparison of surface effects of chemical process methods for deburring,descaling and polishing

Comparison of chemical polishing effects of workpieces

4. Electrolytic polishing.
Electrolytic polishing is essentially chemical polishing. The acid solution is put into the electrolytic tank, the workpiece is used as the anode and connected to the power supply, the lead electrode in the electrolytic tank is used as the cathode, and direct current is passed on. Due to the high current of the burrs and oxide scale on the surface of the part, the corresponding dissolution speed in acid solution is fast. This uneven dissolution speed dissolves burrs or oxide layers first, which plays a smooth and polishing role for the entire workpiece. If the surface is too rough, it is not suitable to electrolytic polish directly. It is best to use mechanical polishing to rough finish it once, and then electrolytic polishing can make the surface finish of the parts reach a very high level, and even achieve a mirror-like gloss effect. Some daily products and handicrafts such as decorative hardware, lamps, kitchen and bathroom supplies made of stainless steel, aluminum alloy, and zinc alloy can be electropolished to obtain a satisfactory surface effect. The advantage of electrolytic polishing is that it is suitable for processing parts with special-shaped and complex surfaces, some parts that cannot be mechanically polished, and internal deep holes, thin tubes, gaps, and dead corners. It has high production efficiency and good polishing effect. The disadvantages are the same as chemical polishing: serious pollution, poor safety, unfriendly to the environment, complicated preparation of electrolytic acid, short service life, and difficult regeneration. It is only suitable for polishing steel, aluminum, copper, nickel and various alloys.

Electrolytic method for deburring, descaling and polishing

Electrolytic polishing process

Comparison of workpiece effects of electrolytic polishing process

Comparison of surface effects of electrolytic polishing workpieces

5. Plasma polishing.
Also called nano-polishing, it is a new environmentally friendly polishing process that can be called a polishing artifact. The principle of plasma polishing is relatively complex. It involves three polishing mechanisms. One is the tip discharge effect: raised parts such as surface burrs have low resistance and are easily broken down in a high-voltage electric field, forming discharge channels. The burrs are dissolved and sharp edges are formed. The corners are rounded and the flatness is improved; the second is the particle bombardment effect: the polishing solution and the workpiece are instantly short-circuited, causing a large amount of heat to vaporize the polishing solution. When the ions of this gas reach a certain number, plasma is formed. The form of this plasma is very high. When it collides with the surface of the workpiece, the oxide layer on the metal surface will be loosened and decomposed, and the surface will be evenly polished. The third is the gas film blasting scour effect: the plasma gas film surrounding the product is rapidly blasted under the influence of electromagnetic field and high temperature, and the oxide layer on the surface of the workpiece is peeled off under the action of tangential cavitation force. The combined action of these three effects instantly The surface of the workpiece will be shiny. Nano-polishing can control the dimensional accuracy of the workpiece within 0.002mm, and the roughness can reach Ra0.01. The polished product has improved smoothness, precision, hardness and durability. It is widely used in the field of fine polishing of high-end products, such as the furniture, bathroom and tableware industries. : handles, handles, faucets, copper parts; glasses industry: glasses frames, glasses frames; aerospace manufacturing: aircraft engine blades; medical device manufacturing: titanium alloys, stainless steel instruments and other fields.
The advantages of plasma polishing are wide application, fast polishing speed (can be completed within ten seconds to two minutes), high precision, good effect, and can achieve electroplating-level mirror effect. Its nano-polishing liquid is very environmentally friendly, and the waste liquid can be discharged directly without causing pollution. The equipment adopts automatic control, which is simple to operate, convenient to maintain and has low labor cost. It can polish some irregular and complex surfaces, dead corners, holes and other parts. It can also produce a passivation film on the surface of the workpiece to keep the surface bright and effectively prevent oxidation. The disadvantage is that the initial investment in equipment is large, and the preparation of workpiece polishing fluids of different materials is complicated. It can only polish conductive materials such as stainless steel, copper, zinc and their alloys. It is not suitable for excessively large burrs, pits, and excessively thick oxide layers. Suitable for polishing medium to large size product parts.

Plasma polisher for deburring, descaling, chamfering, nano polishing machine

Plasma (nano) polishing machine

Comparison of plasma and nano polishing workpiece effects

Comparison of plasma (nano) polishing workpiece effects

error: 网站内容有版权保护!!